本文目录一览:
什么是SSL/TLS解密?
SSL加密是在传输层对网络连接进行加密,安全传输层协议(TLS)用于在两个通信应用程序之间提供保密性和数据完整性。就是我们看到地址栏https://,TLS加密套件、SSL属于数字证书,相互相成。
起初是因为HTTP在传输数据时使用的是明文(虽然说POST提交的数据时放在报体里看不到的,但是还是可以通过抓包工具窃取到)是不安全的,为了解决这一隐患网景公司推出了SSL安全套接字协议层,SSL是基于HTTP之下TCP之上的一个协议层,是基于HTTP标准并对TCP传输数据时进行加密,所以HTTPS是HTTP+SSL/TCP的简称。
常见的几种SSL/TLS漏洞及攻击方式
SSL/TLS漏洞目前还是比较普遍的,首先关闭协议:SSL2、SSL3(比较老的SSL协议)配置完成ATS安全标准就可以避免以下的攻击了,最新的服务器环境都不会有一下问题,当然这种漏洞都是自己部署证书没有配置好导致的。
Export 加密算法
Export是一种老旧的弱加密算法,是被美国法律标示为可出口的加密算法,其限制对称加密最大强度位数为40位,限制密钥交换强度为最大512位。这是一个现今被强制丢弃的算法。
Downgrade(降级攻击)
降级攻击是一种对计算机系统或者通信协议的攻击,在降级攻击中,攻击者故意使系统放弃新式、安全性高的工作方式,反而使用为向下兼容而准备的老式、安全性差的工作方式,降级攻击常被用于中间人攻击,讲加密的通信协议安全性大幅削弱,得以进行原本不可能做到的攻击。 在现代的回退防御中,使用单独的信号套件来指示自愿降级行为,需要理解该信号并支持更高协议版本的服务器来终止协商,该套件是TLS_FALLBACK_SCSV(0x5600)
MITM(中间人攻击)
MITM(Man-in-the-MiddleAttack) ,是指攻击者与通讯的两端分别创建独立的联系,并交换其所有收到的数据,使通讯的两端认为他们正在通过一个私密的连接与对方直接对话,但事实上整个对话都被攻击者完全控制,在中间人攻击中,攻击者可以拦截通讯双方的通话并插入新的内容。一个中间人攻击能成功的前提条件是攻击者能够将自己伪装成每个参与会话的终端,并且不被其他终端识破。
BEAST(野兽攻击)
BEAST(CVE-2011-3389) BEAST是一种明文攻击,通过从SSL/TLS加密的会话中获取受害者的COOKIE值(通过进行一次会话劫持攻击),进而篡改一个加密算法的 CBC(密码块链)的模式以实现攻击目录,其主要针对TLS1.0和更早版本的协议中的对称加密算法CBC模式。
RC4 加密算法
由于早期的BEAST野兽攻击而采用的加密算法,RC4算法能减轻野兽攻击的危害,后来随着客户端版本升级,有了客户端缓解方案(Chrome 和 Firefox 提供了缓解方案),野兽攻击就不是什么大问题了。同样这是一个现今被强制丢弃的算法。
CRIME(罪恶攻击)
CRIME(CVE-2012-4929),全称Compression Ratio Info-leak Made Easy,这是一种因SSL压缩造成的安全隐患,通过它可窃取启用数据压缩特性的HTTPS或SPDY协议传输的私密Web Cookie。在成功读取身份验证Cookie后,攻击者可以实行会话劫持和发动进一步攻击。
SSL 压缩在下述版本是默认关闭的: nginx 1.1.6及更高/1.0.9及更高(如果使用了 OpenSSL 1.0.0及更高), nginx 1.3.2及更高/1.2.2及更高(如果使用较旧版本的 OpenSSL)。
如果你使用一个早期版本的 nginx 或 OpenSSL,而且你的发行版没有向后移植该选项,那么你需要重新编译没有一个 ZLIB 支持的 OpenSSL。这会禁止 OpenSSL 使用 DEFLATE 压缩方式。如果你禁用了这个,你仍然可以使用常规的 HTML DEFLATE 压缩。
Heartbleed(心血漏洞)
Heartbleed(CVE-2014-0160) 是一个于2014年4月公布的 OpenSSL 加密库的漏洞,它是一个被广泛使用的传输层安全(TLS)协议的实现。无论是服务器端还是客户端在 TLS 中使用了有缺陷的 OpenSSL,都可以被利用该缺陷。由于它是因 DTLS 心跳扩展(RFC 6520)中的输入验证不正确(缺少了边界检查)而导致的,所以该漏洞根据“心跳”而命名。这个漏洞是一种缓存区超读漏洞,它可以读取到本不应该读取的数据。如果使用带缺陷的Openssl版本,无论是服务器还是客户端,都可能因此受到攻击。
POODLE漏洞(卷毛狗攻击)
2014年10月14号由Google发现的POODLE漏洞,全称是Padding Oracle On Downloaded Legacy Encryption vulnerability,又被称为“贵宾犬攻击”(CVE-2014-3566),POODLE漏洞只对CBC模式的明文进行了身份验证,但是没有对填充字节进行完整性验证,攻击者窃取采用SSL3.0版加密通信过程中的内容,对填充字节修改并且利用预置填充来恢复加密内容,以达到攻击目的。
TLS POODLE(TLS卷毛狗攻击)
TLS POODLE(CVE-2014-8730) 该漏洞的原理和POODLE漏洞的原理一致,但不是SSL3协议。由于TLS填充是SSLv3的一个子集,因此可以重新使用针对TLS的POODLE攻击。TLS对于它的填充格式是非常严格的,但是一些TLS实现在解密之后不执行填充结构的检查。即使使用TLS也不会容易受到POODLE攻击的影响。
CCS
CCS(CVE-2014-0224) 全称openssl MITM CCS injection attack,Openssl 0.9.8za之前的版本、1.0.0m之前的以及1.0.1h之前的openssl没有适当的限制ChangeCipherSpec信息的处理,这允许中间人攻击者在通信之间使用0长度的主密钥。
FREAK
FREAK(CVE-2015-0204) 客户端会在一个全安全强度的RSA握手过程中接受使用弱安全强度的出口RSA密钥,其中关键在于客户端并没有允许协商任何出口级别的RSA密码套件。
Logjam
Logjam(CVE-2015-4000) 使用 Diffie-Hellman 密钥交换协议的 TLS 连接很容易受到攻击,尤其是DH密钥中的公钥强度小于1024bits。中间人攻击者可将有漏洞的 TLS 连接降级至使用 512 字节导出级加密。这种攻击会影响支持 DHE_EXPORT 密码的所有服务器。这个攻击可通过为两组弱 Diffie-Hellman 参数预先计算 512 字节质数完成,特别是 Apache 的 httpd 版本 2.1.5 到 2.4.7,以及 OpenSSL 的所有版本。
DROWN(溺水攻击/溺亡攻击)
2016年3月发现的针对TLS的新漏洞攻击——DROWN(Decrypting RSA with Obsolete and Weakened eNcryption,CVE-2016-0800),也即利用过时的、弱化的一种RSA加密算法来解密破解TLS协议中被该算法加密的会话密钥。 具体说来,DROWN漏洞可以利用过时的SSLv2协议来解密与之共享相同RSA私钥的TLS协议所保护的流量。 DROWN攻击依赖于SSLv2协议的设计缺陷以及知名的Bleichenbacher攻击。
通常检查以下两点服务器的配置
服务器允许SSL2连接,需要将其关闭。
私钥同时用于允许SSL2连接的其他服务器。例如,Web服务器和邮件服务器上使用相同的私钥和证书,如果邮件服务器支持SSL2,即使web服务器不支持SSL2,攻击者可以利用邮件服务器来破坏与web服务器的TLS连接。
Openssl Padding Oracle
Openssl Padding Oracle(CVE-2016-2107) openssl 1.0.1t到openssl 1.0.2h之前没有考虑某些填充检查期间的内存分配,这允许远程攻击者通过针对AES CBC会话的padding-oracle攻击来获取敏感的明文信息。
强制丢弃的算法
aNULL 包含了非验证的 Diffie-Hellman 密钥交换,这会受到中间人(MITM)攻击
eNULL 包含了无加密的算法(明文)
EXPORT 是老旧的弱加密算法,是被美国法律标示为可出口的
RC4 包含的加密算法使用了已弃用的 ARCFOUR 算法
DES 包含的加密算法使用了弃用的数据加密标准(DES)
SSLv2 包含了定义在旧版本 SSL 标准中的所有算法,现已弃用
MD5 包含了使用已弃用的 MD5 作为哈希算法的所有算法
更好的 TLS 1.3 协议解析
网络安全篇,面对复杂多变的网络环境,我们需要掌握哪些关于网络安全的相关知识,聊一聊与网络安全相关的:HTTPS、SSL、TLS 等。
《 网络安全 — HTTPS 》
《 网络安全的基石(上)— 加密 》
《 网络安全的基石(下)— 完整性与身份认证 》
《 公钥信任问题 — 数字证书与 CA 》
《 信任始于握手 — TLS 连接过程详解 》
《TLS 1.3 特性解析》
《 如何优化 HTTPS 连接 》- 待完善
早在 2013 年,IETF(互联网工程小组) 就对 TLS 1.2 的过时设计和两次往返开销心生不满,因此开始着手准备新版本的 TLS。同年 8 月由 Eirc Rescorla 提议出新版本 TLS 的 功能愿望清单 。在经过一番 辩论 后,最终该提议内容被定义为 TLS 1.3。推动 TLS 1.3 设计的主要问题大概有:
终于在 2018 年 8 月 10 日,历经 4 年时间,TLS 1.3 最终版本发布了 — RFC-8446 。新的协议使得互联网变得更快、更安全;随着 TLS 1.3 的采用率不断提高,它势必会长远影响互联网的发展;同时尽快将 TLS 1.3 平滑应用到线上环境无疑是势在必行。
不过在这之前, TLS 1.2 的应用也已经有 10 年(2008 年)的时间了,毕竟历经了种种考验,新的协议在推广和部署上必定会带来新的挑战。接下来我们就来看看新版本的 TLS 是如何做的?
由于 TLS 1.1/1.2 等协议已经出现了很多年,很多应用软件、中间代理(Middlebox)只认老的记录协议格式,更新改造很困难,甚至僵化。
可部署性
正式由于这些中间代理/软件(Middlebox)在新的更改中表现不佳,即使是对 TLS 1.3 协议的细微更改(例如消除冗余的 ChangeCipherSpec 消息,版本号从 0x03 升级为 0x04),也最终导致了某些设备的连接失败问题。这也是 TLS 1.3 从草稿到最终发布花费了这么长时间的重要原因之一。
为了保证这些被广泛部署的“旧设备”能够继续使用,TLS 1.3 不得不做出妥协,通过“伪装”来实现兼容:保持现有的记录格式不变,使得 TLS 1.3 看上去“像是” TLS 1.2。
扩展协议
那么,如何区分是 1.2 还是 1.3 呢?
这里用到一个新的 扩展协议 (Extension Protocol),它有点“补充条款”的意思,通过在记录末尾添加一系列的“扩展字段”来增加新的功能,旧版本的 TLS 不认识它可以直接忽略,这就实现了“向后兼容”。
TLS 1.3 正是利用扩展实现了许多重要的功能,比如 “supported_groups” “key_share” “signature_algorithms” “server_name” 等。
在经历十余年的实践中获得许多宝贵经验的 TLS 1.2 陆续发现了很多的漏洞和加密算法的弱点。因此消除潜在的危险设计来纠正以前的错误成为 TLS 1.3 的设计目标之一。所以新版本的 TLS 协议里要修补这些不安全的因素。
例如:
固定密钥交换
经过这样一番“减肥瘦身”之后,TLS 1.3 的密钥交换算法只有 ECDHE 和 DHE 了,关于椭圆曲线(ECC)也被“砍”到只剩 P-256 和 x25519 等 5 种。
首先来说下废除 RSA 和 DH 密钥交换算法的原因:
由于客户端默认会选择 ECDHE 而非 RSA 做密钥交换,这是因为它不具有“ 前向安全 ”(Forward Secrecy):“假设有人长期记录了加密的数据,然后在后续的某个时间段获得了服务器的 RSA 私钥,那么黑客就能够使用该私钥解密出之前所有报文的 “Pre-Master”,再计算出会话密钥,破解所有密文。这便是 今日截获,明日破解 ”
而 ECDHE 算法在每次握手时都会生成一对临时公钥和私钥,每次通信的秘钥对都是不同的,也就是“一次一密”,即使黑客花大力气破解了这一次的会话密钥,也只是这次通信被攻击,之前的历史消息不会受到影响,仍然是安全的。
所以现在主流的服务器和客户端在握手阶段都已经不再使用 RSA,改用 ECDHE,而 TLS 1.3 在协议里明确废除了 RSA 和 DH 则在标准层面保证了“前向安全”。
固定密码
多年以来,密钥交换机制不是唯一引起安全漏洞的部分,对称密钥部分也有相当一部分问题。
同样,用于对称加密的算法在经过“减肥瘦身”之后也只保留了 AES、ChaCha20 ,分组模式只能用 AEAD 的 GCM、CCM 和 Poly1305,摘要算法也只能用 SHA 256、SHA 384。
这样原来众多的加密算法、参数组合导致密码套件非常复杂,难以选择。而经过瘦身之后的 TLS 1.3 只剩下 5 个套件,使得客户端或服务端在选择密码套件时变得“更加容易”。然而更重要的是,这些算法在 TLS 长期的实践过程中先后已经被证实是构成不安全的因素,从而导致安全漏洞。
修复数字签名
经过前面的学习,相信你也知道 TLS 另一个重要部分是身份验证。在每个连接中服务都是用具有公钥的数字证书向客户端提供身份认证。在 RSA 加密模式下,服务器通过解密预主密钥并通过对话记录计算 MAC 来证明其对私钥的所有权。在 Diffie-Hellman 模式下,服务器使用数字签名来证明私钥的所有权。
在 TLS 1.2 和更早的版本中,服务器的签名仅涵盖部分握手。用于协商使用哪种对称密码的部分没有由私钥签名。这也导致许多引人注目的漏洞 FREAK , LogJam 等。而在 TLS 1.3 由于服务器对整个握手记录进行签名,因此可以避免这些情况。
HTTPS 建立连接时除了要做 TCP 握手,还要做 TLS 握手,在 TLS 1.2 中会多花两个消息往返(2 - RTT),这可能导致几十毫秒甚至上百毫秒的延迟,在移动网络中延迟还会更严重。
1-RTT 模式
密码套件的大幅度简化,也就没有必要再像以前那样走复杂的的协商流程了。TLS 1.3 压缩了以前的 “Hello” 协商过程,删除了 “Key Exchange” 消息,把握手时间减少到了 “1-RTT”,效率提高了一倍。
下面是 TLS 1.3 握手过程的简图,注意与前面介绍的 TLS 1.2 对比区别在哪里。
0-RTT 恢复
除了标准的 “1-RTT” 握手,受 QUIC 协议的启发,客户端可以在其第一条消息中将加密的数据发送到服务器,与未加密的 HTTP 相比,没有额外的延迟成本。
在 TLS 1.2 中,有两种恢复连接的方法:会话 ID 和会话 Ticket,而 1.3 则将他们组合在一起形成称为 PSK(pre-shared key,预共享密钥)恢复的新模式。
握手分析
目前 Nginx 等 Web 服务器都能够很好的支持 TLS 1.3,但是要求底层的 OpenSSL 必须是 1.1.1。因此如果要部署需要先升级你的 OpenSSL 版本。
首先TCP 建立连接之后,浏览器首先还是发一个 “ Client Hello ”。
由于 1.3 的消息要兼容 1.2,所以开头的版本号、支持的密码套件和随机数(Client Random)结构都是一样的(这时的随机数是 32 个字节)。
注意 “Client Hello” 里的扩展,“ supported_versions ” 表示这是 TLS 1.3,“ supported_groups ” 是支持的曲线,“ key_share ”是曲线对应的参数。
这有点是像是“有话尽量一口气说完”,还是按照老规矩进行“打招呼”,我这边有这些信息,考虑到版本升级,所以附带了一些信息,可能后面会用到。
服务器收到 “Client Hello” 同样返回 “Server Hello” 消息,还是要给出一个 随机数 (Server Random)和选定密码套件。
表面上看 Version 和 TLS 1.2 是一样的,重点是后面的扩展。“ supported_versions ” 里确认使用的是 TLS 1.3,然后在 “ key_share ” 扩展带上曲线和对应的公钥参数。
服务器的回应还是老套路,服务端对客户端的提供的信息作出选择,另外服务端还要再附加上几个参数,这次加密就协商定了。
可以看到相比 TLS 1.2 的握手过程,TLS 1.3 仅用两条消息就共享了 4 个信息: Client Random 和 Server Random 、 Client Params 和 Server Params 。两边就可以各自用 DH 算出 “ Pre-Master ”,再用 HKDF 生成主密钥 “ Master Secret ”,效率比 TLS 1.2 提高了一大截。
在计算出主密钥后,服务器立刻发出 “ Change Cipher Spec ” 消息,比 TLS 1.2 提早进入加密通信,后面的证书等就都是加密的了,减少握手时明文信息泄露。
TLS 1.3 还多了一个 “ Change Cipher Spec ” 消息,服务器用私钥把前面的曲线、套件、参数等握手数据加了签名,作用和 “ Finished ” 消息差不多。但由于是私钥签名,所以强化了身份认证和防篡改。
两个“打招呼”消息之后,客户端验证服务器证书,再发 “Finished” 消息,就正式完成了握手,开始收发 HTTP 报文。
现在已经有很多网站都支持了 TLS 1.3,例如 GitHub :
今天我们主要介绍了 TLS 1.3 的一些新特性,简单总结下来主要包含下面几点:
TLS 1.3 涉及的内容很多,有关它的更详细信息请去参照 RFC-8446 ,关于这部分大家还有哪些要分享的呢?欢迎您的留言或指正。
网络安全系列专题
扩展阅读
TLS 详解
SSL (Secure Sockets Layer) 安全套接层,是一种安全协议,经历了 SSL 1.0、2.0、3.0 版本后发展成了标准安全协议 - TLS (Transport Layer Security) 传输层安全性协议。TLS 有 1.0 (RFC 2246)、1.1(RFC 4346)、1.2(RFC 5246)、1.3(RFC 8446) 版本。
TLS 在实现上分为 记录层 和 握手层 两层,其中握手层又含四个子协议: 握手协议 (handshake protocol)、更改加密规范协议 (change cipher spec protocol)、应用数据协议 (application data protocol) 和警告协议 (alert protocol)
只需配置浏览器和服务器相关设置开启 TLS,即可实现 HTTPS,TLS 高度解耦,可装可卸,与上层高级应用层协议相互协作又相互独立。
TLS/SSL 的功能实现主要依赖于三类基本算法:散列函数 Hash、对称加密和非对称加密,其利用非对称加密实现身份认证和密钥协商,对称加密算法采用协商的密钥对数据加密,基于散列函数验证信息的完整性。
TLS 的基本工作方式是,客户端使用非对称加密与服务器进行通信,实现身份验证并协商对称加密使用的密钥,然后对称加密算法采用协商密钥对信息以及信息摘要进行加密通信,不同的节点之间采用的对称密钥不同,从而可以保证信息只能通信双方获取。
例如,在 HTTPS 协议中,客户端发出请求,服务端会将公钥发给客户端,客户端验证过后生成一个密钥再用公钥加密后发送给服务端(非对称加密),双方会在 TLS 握手过程中生成一个协商密钥(对称密钥),成功后建立加密连接。通信过程中客户端将请求数据用协商密钥加密后发送,服务端也用协商密钥解密,响应也用相同的协商密钥。后续的通信使用对称加密是因为对称加解密快,而握手过程中非对称加密可以保证加密的有效性,但是过程复杂,计算量相对来说也大。
记录协议负责在传输连接上交换的所有底层消息,并且可以配置加密。每一条 TLS 记录以一个短标头开始。标头包含记录内容的类型 (或子协议)、协议版本和长度。原始消息经过分段 (或者合并)、压缩、添加认证码、加密转为 TLS 记录的数据部分。
记录层将信息块分割成携带 2^14 字节 (16KB) 或更小块的数据的 TLSPlaintext 记录。
记录协议传输由其他协议层提交给它的不透明数据缓冲区。如果缓冲区超过记录的长度限制(2^14),记录协议会将其切分成更小的片段。反过来也是可能的,属于同一个子协议的小缓冲区也可以组合成一个单独的记录。
压缩算法将 TLSPlaintext 结构转换为 TLSCompressed 结构。如果定义 CompressionMethod 为 null 表示不压缩
流加密(BulkCipherAlgorithm)将 TLSCompressed.fragment 结构转换为流 TLSCiphertext.fragment 结构
MAC 产生方法如下:
seq_num(记录的序列号)、hash(SecurityParameters.mac_algorithm 指定的哈希算法)
块加密(如 RC2 或 DES),将 TLSCompressed.fragment 结构转换为块 TLSCiphertext.fragment 结构
padding: 添加的填充将明文长度强制为块密码块长度的整数倍。填充可以是长达 255 字节的任何长度,只要满足 TLSCiphertext.length 是块长度的整数倍。长度大于需要的值可以阻止基于分析交换信息长度的协议攻击。填充数据向量中的每个 uint8 必须填入填充长度值 (即 padding_length)。
padding_length: 填充长度应该使得 GenericBlockCipher 结构的总大小是加密块长度的倍数。合法值范围从零到 255(含)。 该长度指定 padding_length 字段本身除外的填充字段的长度
加密块的数据长度(TLSCiphertext.length)是 TLSCompressed.length,CipherSpec.hash_size 和 padding_length 的总和加一
加密和 MAC 功能将 TLSCompressed 结构转换为 TLSCiphertext。记录的 MAC 还包括序列号,以便可以检测到丢失,额外或重复的消息。
记录协议需要一种算法,从握手协议提供的安全性参数生成密钥、 IV 和 MAC secret.
主密钥 (Master secret): 在连接中双方共享的一个 48 字节的密钥
客户随机数 (client random): 由客户端提供的 32 字节值
服务器随机数 (server random): 由服务器提供的 32 字节值
握手是 TLS 协议中最精密复杂的部分。在这个过程中,通信双方协商连接参数,并且完成身 份验证。根据使用的功能的不同,整个过程通常需要交换 6~10 条消息。根据配置和支持的协议扩展的不同,交换过程可能有许多变种。在使用中经常可以观察到以下三种流程:(1) 完整的握手, 对服务器进行身份验证;(2) 恢复之前的会话采用的简短握手;(3) 对客户端和服务器都进行身份验证的握手。
握手协议消息的标头信息包含消息类型(1 字节)和长度(3 字节),余下的信息则取决于消息类型:
每一个 TLS 连接都会以握手开始。如果客户端此前并未与服务器建立会话,那么双方会执行一次完整的握手流程来协商 TLS 会话。握手过程中,客户端和服务器将进行以下四个主要步骤:
下面介绍最常见的握手规则,一种不需要验证客户端身份但需要验证服务器身份的握手:
这条消息将客户端的功能和首选项传送给服务器。
是将服务器选择的连接参数传回客户端。
这个消息的结构与 ClientHello 类似,只是每个字段只包含一个选项,其中包含服务端的 random_S 参数 (用于后续的密钥协商)。服务器无需支持客户端支持的最佳版本。如果服务器不支持与客户端相同的版本,可以提供某个其他版本以期待客户端能够接受
图中的 Cipher Suite 是后续密钥协商和身份验证要用的加密套件,此处选择的密钥交换与签名算法是 ECDHE_RSA,对称加密算法是 AES-GCM,后面会讲到这个
还有一点默认情况下 TLS 压缩都是关闭的,因为 CRIME 攻击会利用 TLS 压缩恢复加密认证 cookie,实现会话劫持,而且一般配置 gzip 等内容压缩后再压缩 TLS 分片效益不大又额外占用资源,所以一般都关闭 TLS 压缩
典型的 Certificate 消息用于携带服务器 X.509 证书链 。
服务器必须保证它发送的证书与选择的算法套件一致。比方说,公钥算法与套件中使用的必须匹配。除此以外,一些密钥交换算法依赖嵌入证书的特定数据,而且要求证书必须以客户端支持的算法签名。所有这些都表明服务器需要配置多个证书(每个证书可能会配备不同的证书链)。
Certificate 消息是可选的,因为并非所有套件都使用身份验证,也并非所有身份验证方法都需要证书。更进一步说,虽然消息默认使用 X.509 证书,但是也可以携带其他形式的标志;一些套件就依赖 PGP 密钥
携带密钥交换需要的额外数据。ServerKeyExchange 是可选的,消息内容对于不同的协商算法套件会存在差异。部分场景下,比如使用 RSA 算法时,服务器不需要发送此消息。
ServerKeyExchange 仅在服务器证书消息(也就是上述 Certificate 消息)不包含足够的数据以允许客户端交换预主密钥(premaster secret)时才由服务器发送。
比如基于 DH 算法的握手过程中,需要单独发送一条 ServerKeyExchange 消息带上 DH 参数:
表明服务器已经将所有预计的握手消息发送完毕。在此之后,服务器会等待客户端发送消息。
客户端验证证书的合法性,如果验证通过才会进行后续通信,否则根据错误情况不同做出提示和操作,合法性验证内容包括如下:
由 PKI 体系 的内容可知,对端发来的证书签名是 CA 私钥加密的,接收到证书后,先读取证书中的相关的明文信息,采用相同的散列函数计算得到信息摘要,然后利用对应 CA 的公钥解密签名数据,对比证书的信息摘要,如果一致,则可以确认证书的合法性;然后去查询证书的吊销情况等
合法性验证通过之后,客户端计算产生随机数字的预主密钥(Pre-master),并用证书公钥加密,发送给服务器并携带客户端为密钥交换提供的所有信息。这个消息受协商的密码套件的影响,内容随着不同的协商密码套件而不同。
此时客户端已经获取全部的计算协商密钥需要的信息: 两个明文随机数 random_C 和 random_S 与自己计算产生的 Pre-master,然后得到协商密钥(用于之后的消息加密)
图中使用的是 ECDHE 算法,ClientKeyExchange 传递的是 DH 算法的客户端参数,如果使用的是 RSA 算法则此处应该传递加密的预主密钥
通知服务器后续的通信都采用协商的通信密钥和加密算法进行加密通信
Finished 消息意味着握手已经完成。消息内容将加密,以便双方可以安全地交换验证整个握手完整性所需的数据。
这个消息包含 verify_data 字段,它的值是握手过程中所有消息的散列值。这些消息在连接两端都按照各自所见的顺序排列,并以协商得到的主密钥 (enc_key) 计算散列。这个过程是通过一个伪随机函数(pseudorandom function,PRF)来完成的,这个函数可以生成任意数量的伪随机数据。
两端的计算方法一致,但会使用不同的标签(finished_label):客户端使用 client finished,而服务器则使用 server finished。
因为 Finished 消息是加密的,并且它们的完整性由协商 MAC 算法保证,所以主动网络攻击者不能改变握手消息并对 vertify_data 的值造假。在 TLS 1.2 版本中,Finished 消息的长度默认是 12 字节(96 位),并且允许密码套件使用更长的长度。在此之前的版本,除了 SSL 3 使用 36 字节的定长消息,其他版本都使用 12 字节的定长消息。
服务器用私钥解密加密的 Pre-master 数据,基于之前交换的两个明文随机数 random_C 和 random_S,同样计算得到协商密钥: enc_key = PRF(Pre_master, "master secret", random_C + random_S) ;
同样计算之前所有收发信息的 hash 值,然后用协商密钥解密客户端发送的 verify_data_C,验证消息正确性;
服务端验证通过之后,服务器同样发送 change_cipher_spec 以告知客户端后续的通信都采用协商的密钥与算法进行加密通信(图中多了一步 New Session Ticket,此为会话票证,会在会话恢复中解释);
服务器也结合所有当前的通信参数信息生成一段数据 (verify_data_S) 并采用协商密钥 session secret (enc_key) 与算法加密并发送到客户端;
客户端计算所有接收信息的 hash 值,并采用协商密钥解密 verify_data_S,验证服务器发送的数据和密钥,验证通过则握手完成;
开始使用协商密钥与算法进行加密通信。
HTTPS 通过 TLS 层和证书机制提供了内容加密、身份认证和数据完整性三大功能。加密过程中,需要用到非对称密钥交换和对称内容加密两大算法。
对称内容加密强度非常高,加解密速度也很快,只是无法安全地生成和保管密钥。在 TLS 协议中,最后的应用数据都是经过对称加密后传输的,传输中所使用的对称协商密钥(上文中的 enc_key),则是在握手阶段通过非对称密钥交换而来。常见的 AES-GCM、ChaCha20-Poly1305,都是对称加密算法。
非对称密钥交换能在不安全的数据通道中,产生只有通信双方才知道的对称加密密钥。目前最常用的密钥交换算法有 RSA 和 ECDHE。
RSA 历史悠久,支持度好,但不支持 完美前向安全 - PFS(Perfect Forward Secrecy) ;而 ECDHE 是使用了 ECC(椭圆曲线)的 DH(Diffie-Hellman)算法,计算速度快,且支持 PFS。
在 PKI 体系 一节中说明了仅有非对称密钥交换还是无法抵御 MITM 攻击的,所以需要引入了 PKI 体系的证书来进行身份验证,其中服务端非对称加密产生的公钥会放在证书中传给客户端。
在 RSA 密钥交换中,浏览器使用证书提供的 RSA 公钥加密相关信息,如果服务端能解密,意味着服务端拥有与公钥对应的私钥,同时也能算出对称加密所需密钥。密钥交换和服务端认证合并在一起。
在 ECDH 密钥交换中,服务端使用私钥 (RSA 或 ECDSA) 对相关信息进行签名,如果浏览器能用证书公钥验证签名,就说明服务端确实拥有对应私钥,从而完成了服务端认证。密钥交换则是各自发送 DH 参数完成的,密钥交换和服务端认证是完全分开的。
可用于 ECDHE 数字签名的算法主要有 RSA 和 ECDSA - 椭圆曲线数字签名算法 ,也就是目前密钥交换 + 签名有三种主流选择:
比如我的网站使用的加密套件是 ECDHE_RSA,可以看到数字签名算法是 sha256 哈希加 RSA 加密,在 PKI 体系 一节中讲了签名是服务器信息摘要的哈希值加密生成的
内置 ECDSA 公钥的证书一般被称之为 ECC 证书,内置 RSA 公钥的证书就是 RSA 证书。因为 256 位 ECC Key 在安全性上等同于 3072 位 RSA Key,所以 ECC 证书体积比 RSA 证书小,而且 ECC 运算速度更快,ECDHE 密钥交换 + ECDSA 数字签名是目前最好的加密套件
以上内容来自本文: 开始使用 ECC 证书
关于 ECC 证书的更多细节可见文档: ECC Cipher Suites for TLS - RFC4492
使用 RSA 进行密钥交换的握手过程与前面说明的基本一致,只是没有 ServerKeyExchange 消息,其中协商密钥涉及到三个参数 (客户端随机数 random_C、服务端随机数 random_S、预主密钥 Premaster secret),
其中前两个随机数和协商使用的算法是明文的很容易获取,最后一个 Premaster secret 会用服务器提供的公钥加密后传输给服务器 (密钥交换),如果这个预主密钥被截取并破解则协商密钥也可以被破解。
RSA 算法的细节见: wiki 和 RSA算法原理(二)- 阮一峰
RSA 的算法核心思想是利用了极大整数 因数分解 的计算复杂性
而使用 DH(Diffie-Hellman) 算法 进行密钥交换,双方只要交换各自的 DH 参数(在 ServerKeyExchange 发送 Server params,在 ClientKeyExchange 发送 Client params),不需要传递 Premaster secret,就可以各自算出这个预主密钥
DH 的握手过程如下,大致过程与 RSA 类似,图中只表达如何生成预主密钥:
服务器通过私钥将客户端随机数 random_C,服务端随机数 random_S,服务端 DH 参数 Server params 签名生成 signature,然后在 ServerKeyExchange 消息中发送服务端 DH 参数和该签名;
客户端收到后用服务器给的公钥解密验证签名,并在 ClientKeyExchange 消息中发送客户端 DH 参数 Client params;
服务端收到后,双方都有这两个参数,再各自使用这两个参数生成预主密钥 Premaster secret,之后的协商密钥等步骤与 RSA 基本一致。
关于 DH 算法如何生成预主密钥,推荐看下 Wiki 和 Ephemeral Diffie-Hellman handshake
其核心思想是利用了 离散对数问题 的计算复杂性
算法过程可以抽象成下图:
双方预先商定好了一对 P g 值 (公开的),而 Alice 有一个私密数 a(非公开,对应一个私钥),Bob 有一个私密数 b(非公开,对应一个私钥)
对于 Alice 和 Bob 来说通过对方发过来的公钥参数和自己手中的私钥可以得到最终相同的密钥
而第三方最多知道 P g A B,想得到私钥和最后的密钥很困难,当然前提是 a b P 足够大 (RFC3526 文档中有几个常用的大素数可供使用),否则暴力破解也有可能试出答案,至于 g 一般取个较小值就可以
如下几张图是实际 DH 握手发送的内容:
可以看到双方发给对方的参数中携带了一个公钥值,对应上述的 A 和 B
而且实际用的加密套件是 椭圆曲线 DH 密钥交换 (ECDH) ,利用由椭圆曲线加密建立公钥与私钥对可以更进一步加强 DH 的安全性,因为目前解决椭圆曲线离散对数问题要比因式分解困难的多,而且 ECC 使用的密钥长度比 RSA 密钥短得多(目前 RSA 密钥需要 2048 位以上才能保证安全,而 ECC 密钥 256 位就足够)
关于 椭圆曲线密码学 - ECC ,推荐看下 A Primer on Elliptic Curve Cryptography - 原文 - 译文
尽管可以选择对任意一端进行身份验证,但人们几乎都启用了对服务器的身份验证。如果服务器选择的套件不是匿名的,那么就需要在 Certificate 消息中跟上自己的证书。
相比之下,服务器通过发送 CertificateRequest 消息请求对客户端进行身份验证。消息中列出所有可接受的客户端证书。作为响应,客户端发送自己的 Certificate 消息(使用与服务器发送证书相同的格式),并附上证书。此后,客户端发送 CertificateVerify 消息,证明自己拥有对应的私钥。
只有已经过身份验证的服务器才被允许请求客户端身份验证。基于这个原因,这个选项也被称为相互身份验证(mutual authentication)。
在 ServerHello 的过程中发出,请求对客户端进行身份验证,并将其接受的证书的公钥和签名算法传送给客户端。
它也可以选择发送一份自己接受的证书颁发机构列表,这些机构都用其可分辨名称来表示:
在 ClientKeyExchange 的过程中发出,证明自己拥有的私钥与之前发送的客户端证书中的公钥匹配。消息中包含一条到这一步为止的所有握手消息的签名:
最初的会话恢复机制是,在一次完整协商的连接断开时,客户端和服务器都会将会话的安全参数保存一段时间。希望使用会话恢复的服务器为会话指定唯一的标识,称为会话 ID(Session ID)。服务器在 ServerHello 消息中将会话 ID 发回客户端。
希望恢复早先会话的客户端将适当的 Session ID 放入 ClientHello 消息,然后提交。服务器如果同意恢复会话,就将相同的 Session ID 放入 ServerHello 消息返回,接着使用之前协商的主密钥生成一套新的密钥,再切换到加密模式,发送 Finished 消息。
客户端收到会话已恢复的消息以后,也进行相同的操作。这样的结果是握手只需要一次网络往返。
Session ID 由服务器端支持,协议中的标准字段,因此基本所有服务器都支持,服务器端保存会话 ID 以及协商的通信信息,占用服务器资源较多。
用来替代服务器会话缓存和恢复的方案是使用会话票证(Session ticket)。使用这种方式,除了所有的状态都保存在客户端(与 HTTP Cookie 的原理类似)之外,其消息流与服务器会话缓存是一样的。
其思想是服务器取出它的所有会话数据(状态)并进行加密 (密钥只有服务器知道),再以票证的方式发回客户端。在接下来的连接中,客户端恢复会话时在 ClientHello 的扩展字段 session_ticket 中携带加密信息将票证提交回服务器,由服务器检查票证的完整性,解密其内容,再使用其中的信息恢复会话。
这种方法有可能使扩展服务器集群更为简单,因为如果不使用这种方式,就需要在服务集群的各个节点之间同步会话。
Session ticket 需要服务器和客户端都支持,属于一个扩展字段,占用服务器资源很少。